ENGINEERING OPERATIONS AND SAFETY All warp propulsion system (WPS) hardware is maintained according to standard Starfleet mean time between failures (MTBF) monitoring and changeout schedules. Owing to the high usage rate of the matter/antimatter reaction assembly (M/ARA), all of its major components have been designed for maximum reliability and high MTBF values. Standard in-flight preventative maintenance is not intended for the warp engine, since the core and the power transfer conduits can be serviced only at a Starfleet yard or starbase equipped to perform Class 5 engineering repairs. While docked at one of these facilities, the core can be removed and dismantled for replacement of such components as the magnetic constrictor coils, refurbishment of interior protective coatings, and automated inspection and repair of all critical fuel conduits. The typical cycle between major core inspections and repairs is 10,000 operating hours. While the WPS is shut down, the matter and antimatter injectors can be entered by starship crew for detailed component inspection and replacement. Accessible for preventative maintenance (PM) work in the MRI are the inlet manifolds, fuel conditioners, fusion preburner, magnetic quench block, transfer duct/gas combiner, nozzle head, and related control hardware. Accessible parts within the ARI are the pulsed antimatter gas flow separators and injector nozzles. A partial disassembly of the dilithium crystal articulation frame is possible in flight for probing by nondestructive testing (NDT) methods. Protective surface coatings may be removed and reapplied without the need for a starbase layover. Inboard of the reactant injectors, the shock attenuation cylinders may be removed and replaced after 5,000 hours. Within the warp engine nacelles, most sensor hardware and control hardlines are accessible for inspection and replacement. With the core shut down and plasma vented overboard, the interior of the warp coils is accessible for inspection by flight crews and remote devices. In-flight repair of the plasma injectors is possible, although total replacement requires starbase assistance. As with other components, protective coatings may be refurbished as part of the normal PM program. While at low sublight, crews may access the nacelle by way of the maintenance docking port. Safety considerations when handling slush and liquid deuterium involve extravehicular suit protection for all personnel working around cryogenic fluids and semisolids. All refueling operations are to be handled by teleoperators, unless problems develop requiring crew investigation. The key hazard in exposure to cryogenics involves material embrittlement, even in the case of cryoprotective garments. Care should always be taken to avoid direct contact, deferring close-quarters handling to specialized collection tools and emergency procedures. Æ