IMPULSE ENGINE CONFIGURATION The main impulse engine (MIE) is located on Deck 23 and thrusts along the centerline of the docked spacecraft. During separated flight mode, the engine thrust vectors are adjusted slightly in the +Y direction; that is, pointed slightly up from center to allow for proper center-of-mass motions. The Saucer Module impulse engines are located on Deck 10 on the vehicle XZ plane and thrust parallel to the vehicle centerline. Four individual impulse engines are grouped together to form the MIE, and two groups of two engines form the Saucer Module impulse engines. Each impulse engine consists of three basic components: impulse reaction chamber (IRC, three per impulse engine), accelerator/generator (A/G), driver coil assembly (DCA), and vectored exhaust director (VED). The IRC is an armored sphere six meters in diameter, designed to contain the energy released in a conventional proton-proton fusion reaction. It is constructed of eight layers of dispersion-strengthened hafnium excelinide with a total wall thickness of 674 cm. A replaceable inner liner of crystalline gulium fluoride 40 cm thick protects the structural sphere from reaction and radiation effects. Penetrations are made into the sphere for reaction exhaust, pellet injectors, standard fusion initiators, and sensors. The Galaxy class normally carries four additional IRC modules primarily as backup power generation devices, though these modules may be channeled through the main system exhaust paths to provide backup propulsion. Slush deuterium from the main cryo tank is heated and fed to interim supply tanks on Deck 9, where the heat energy is removed, bringing the deuterium down to a frozen state as it is formed into pellets. Pellets can range in size from 0.5 cm to 5 cm, depending on the desired energy output per unit time. A standing pulsed fusion shock front is created by the standard initiators ranged about the forward inner surface of the sphere. The total instantaneous output of the IRC is throttleable from 10Þ to 10¹ megawatts. High-energy plasma created during engine operation is exhausted through a central opening in the sphere to the accelerator/generator. This stage is generally cylindrical, 3.1 meters long and 5.8 meters in diameter, constructed of an integral single-crystal polyduranium frame and pyrovunide exhaust accelerator. During propulsion operations, the accelerator is active, raising the velocity of the plasma and passing it on to the third stage, the space-time driver coils. If the engine is commanded to generate power only, the accelerator is shut down and the energy is diverted by the EPS to the shipÕs overall power distribution net. Excess exhaust products can be vented nonpropulsively. The combined mode, power generation during propulsion, allows the exhaust plasma to pass through, and a portion of the energy is tapped by the MHD system to be sent to the power net. The third stage of the engine is the driver coil assembly (DCA). The DCA is 6.5 meters long and 5.8 meters in diameter and consists of a series of six split toroids, each manufactured from cast verterium cortenide 934. Energy from the accelerated plasma, when driven through the toroids, creates the necessary combined field effect that (1) reduces the apparent mass of the spacecraft at its inner surface, and (2) facilitates the slippage of the continuum past the spacecraft at its outer surface. The final stage is the vectored exhaust director (VED). The VED consists of a series of moveable vanes and channels designed to expel exhaust products in a controlled manner. The VED is capable of steerable propulsive and nonpropulsive modes (simple venting). Æ